On a Conjecture of Ira Gessel

نویسندگان

  • Ira Gessel
  • Marko Petkovšek
  • Herbert S. Wilf
چکیده

Let F (m; n1, n2) denote the number of lattice walks from (0, 0) to (n1, n2), always staying in the first quadrant {(n1, n2); n1 ≥ 0, n2 ≥ 0} and having exactly m steps, each of which belongs to the set {E = (1, 0),W = (−1, 0), NE = (1, 1), SW = (−1,−1)}. Ira Gessel conjectured that F (2n; 0, 0) = 16 (1/2)n(5/6)n (2)n(5/3)n . We pose similar conjectures for some other values of (n1, n2), and give closed-form formulas for F (n1; n1, n2) when n1 ≥ n2 as well as for F (2n2−n1; n1, n2) when n1 ≤ n2. In the main part of the paper, we derive a functional equation satisfied by the generating function of F (m; n1, n2), use the kernel method to turn it into an infinite lowertriangular system of linear equations satisfied by the values of F (m; n1, 0) and F (m; 0, n2) + F (m; 0, n2−1), and express these values explicitly as determinants of lower-Hessenberg matrices with unit superdiagonals whose non-zero entries are products of two binomial coefficients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A human proof of Gessel’s lattice path conjecture

Gessel walks are lattice paths confined to the quarter plane that start at the origin and consist of unit steps going either West, East, South-West or North-East. In 2001, Ira Gessel conjectured a nice closed-form expression for the number of Gessel walks ending at the origin. In 2008, Kauers, Koutschan and Zeilberger gave a computer-aided proof of this conjecture. The same year, Bostan and Kau...

متن کامل

Three Proofs and a Generalization of the Goulden-Litsyn-Shevelev Conjecture on a Sequence Arising in Algebraic Geometry

We prove and generalize a conjecture of Goulden, Litsyn, and Shevelev that certain Laurent polynomials related to the solution of a functional equation have only odd negative powers.

متن کامل

A SHORT PROOF OF THE ZEILBERGER-BRESSOUD q-DYSON THEOREM

We give a formal Laurent series proof of Andrews’s q-Dyson Conjecture, first proved by Zeilberger and Bressoud.

متن کامل

A note on 2-distant noncrossing partitions and weighted Motzkin paths

We prove a conjecture of Drake and Kim: the number of 2-distant noncrossing partitions of {1, 2, . . . , n} is equal to the sum of weights of Motzkin paths of length n, where the weight of a Motzkin path is a product of certain fractions involving Fibonacci numbers. We provide two proofs of their conjecture: one uses continued fractions and the other is combinatorial.

متن کامل

Generalized Rook Polynomials and Orthogonal Polynomials

We consider several generalizations of rook polynomials. In particular we develop analogs of the theory of rook polynomials that are related to general Laguerre and Charlier polynomials in the same way that ordinary rook polynomials are related to simple Laguerre polynomials.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008